• 会员登录
  • 图书商城
  • 网络课堂
真题:行测 | 申论 | 面试
预测:行测 | 申论 | 面试
 浙江
中国公务员网 >> 精选题库 >> 公务员 >> 行测 >> 正文
2012年广西公务员考试行政能力测试B  数学题
更新时间:2011-12-16   来源:本站原创   点击数:1244次   字号:T|T
【51】一个圆能把平面分成两个区域,两个圆能把平面分成四个区域,门四个圆最多能把平面分成多少个区域?(  )
    A.13;B.14;C.15;D.16
分析:选B,其中3个圆,把空间分成7个部分,然后在从中间用第4个圆切开,形成另外7个部分。如下图
     
 
【52】一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问原 木箱内共有乒乓球多少个?  (    )
A.246个; B.258个;C.264个; D.272个;
分析:选C,"一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个"=>说明"每次取8个,最后能全部取完"; "每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个"=>说明"每次取10个,最后还剩4个"=>因此,球的总数应该是8的倍数,同时被10除余4=>选C
 
【53】分数9/13化成小数后,小数点后面第1993位上的数字是(  )。
A. 9;B. 2;C. 7;D. 6;
    分析:选D,9/13是0.692307...循环,1993/6=332余1,代表692307共重复332次,在第333次过程中,只循环到6。
 
【54】一条鱼头长7厘米,尾长为头长加半个身长,身长为头长加尾长,问鱼全长多少厘米?
分析:设鱼的半身长为a,则有,7+7+a=2a得出a等于14,鱼尾长为7+14=21,鱼身长为7+7+14=28,鱼的全身长为21+28+7=56厘米
 
【55】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38 人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有(  )。
     A.22人;B.28人;C.30人;D.36人;
分析:选A。如下图:
 
【56】一电信公司在周一到周五的晚上八点到早上八点以及周六、周日全天,实行长途通话的半价收费,问一周内有几个小时长话是半价收费?(    )。
A.100;B.96; C.108;D.112;
    分析:选A, 周1到周5,晚8点到早8点=>共12×5=60小时,周6、周7,全天=>共24×2=48小时,周5晚8点到早8点,多算了周六的8个小时,因此要减去,综上,共48+60-8=100小时
【57】一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。则此时的标准时间是(  )
     A.9点15分;B.9点30分;C.9点35分;D.9点45分;
分析:选D,快钟和慢种之间除了一个是快1分钟/小时,一个是慢3分钟/小时.可以得到这样关系:快钟和慢种差比为1:3其他的条件就是他们都一起走没有别的不同步了,所以到了快种10点,慢钟9点时候,他们已经差了一个小时,其中按1:3来算快种快了15分,慢种慢了45分钟,由上面分析可以得到现在标准时间为:9:45
 
【58】在一条马路的两旁植树,每3米植一棵,植到头还剩3棵;每隔2.5米植一棵,植到头还缺少37棵。求这条马路的长度。(  )
    A 300米;B 297米;C 600米;D 597米;
分析:选A, 设两边总路程是s s/3+3=s/2.5-37,s=600,因为是路两边,所以600/2=300
 
【59】今天是星期一,问再过36天是星期几?  (   )
分析:有关星期的题,用所求的日期与现在的日期差(即总共有多少天)除以7,若整除则星期不变,余1则星期数加1,余2加2。对于该题36除以7余1,则星期数加1,即星期2
 
【60】1×3,2×2,1×1,2×3,1×2,2×1,1×3……求第40个算式 (    )
     A.1×3;B.2×3;C.3×1;D.2×1;
分析:选B,原式是1,2循环 乘以 3,2,1循环,因此,第40个应当是2和3相乘
 
【61】3种动物赛跑,已知狐狸的速度是兔子的2/3,兔子的速度是松鼠的2倍,一分钟松鼠比狐狸少跑14米,那么半分钟兔子比狐狸多跑(  )米。
A. 28;B. 19;C. 14;D. 7;
分析:选C, 令松鼠速度为x,则兔子为2x,狐狸为(4/3) ×x,又一分钟松鼠比狐狸少跑14米=>(4/3)×x-x=14=>x=42=>兔子一分钟跑84,狐狸一分钟跑56=>兔子半分钟跑42,狐狸半分钟跑28=>42-28=14
 
【62】若一商店进货价便宜8%,而售价保持不变,则其利润(按进货价而定)可由目前X%增加到(X+10)%,则X%中的X是多少?
 分析:设进货价A,售价B,则(B-A)/A=X%,(B-0.92A)/0.92A=(X+10)%;得X=15
 
【63】有4个不同的自然数,他们当中任意两数的和是2的倍数,任意3个数的和是3的倍数,为了使这4个数的和尽可能小,则这4个数的和为( )
A.40;B. 42;C. 46;D.51
分析:选A,由“它们当中任意两数的和都是2的倍数”可知这些数必都是偶数,或都是奇数。再由“任意三个数的和都是3的倍数”可知这些数都是除以3后余数相同的数(能被3整除的数视其余数为0)。如第一个数取3(奇数,被3除余0),接着就应取9、15、21…(都是奇数,被3除余0);如第一个数取2(偶数,被3除余2),接着应取8、14和20……(都为偶数且被3除余2)。因为要让这4个数的和尽可能小,故第一个数应取1。所取的数应依次是:1、7、13、19.和为1+7+13+19=40
 
【64】某种考试以举行了24次,共出了试题426道,每次出的题数有25题,或者16题或者20题,那么其中考25题的有多少次?(  b )
     a.4;b.2;c. 6;d. 9
分析:选B, 设25题的X道,20题的Y道,25X+20Y+16(24-X-Y)=426,得5X+4Y=54,答案代入,得2符合
 
【65】未来中学,在高考前夕进行了四次数学模考,第一次得80分以上的学生为70%,第二次是75%,第三次是85%,第四次是90%,请问在四次考试中都是80分的学生至少是多少?(  )
    A.10%;B.20%;C.30%;D.40%;
分析:选B,这四次每次没有考80分的分别为30%,25%,15%,10%,求在四次考试中80分以上的至少为多少也就是求80分以下最多为多少,假设没次都考80分以下的人没有重合的,即30%+25%+15%+10%=80%,所以80分以上的至少有20%
 
【66】四个连续的自然数的积为1680,他们的和为( )
     A.26;B.52;C.20;D.28;
分析:选A,思路一:因为是自然数且连续=>两连续项相加之和一定为奇数=>根据数列原理,a1+a2+a3+a4=2(a2+a3)=>只要找出ABCD各项除以2后为奇数的那一个=>选A。思路二:1680=105×16=15×7×16=7×8×30=5×6×7×8=>5+6+7+8=26
 
【67】王亮从1月5日开始读一部小说,如果他每天读80页,到1月9日读完;如果他每天读90页,到1月8日读完,为了不影响正常学习,王亮准备减少每天的阅读量,并决定分a天读完,这样,每天读a页便刚好全部读完,这部小说共有(  c  )页。
A. 376;B. 256;C. 324;D. 484;
分析:选C,1月9号看完,最多也就看400页,最少看320页;1月8号看完,最多也就360页,最少看270页。那么小说的页数肯定小于360大于320,那么a×a<360, 只有a=18 页数为324时合适
 
【68】有甲、乙两汽车站,从甲站到乙站与从乙站到甲站每隔10分同时各发车一辆,且都是1小时到达目的地。问某旅客乘车从甲站到乙站,在途中可看到几辆从乙站开往甲站的汽车?(  )
    A. 9;B. 13;C. 14;D. 11;
分析:选D,刚出发时,途中已经有5辆汽车了,同时,要1小时到达目的地=>又会发出6辆汽车=>总共有5+6=11辆
 
【69】甲、乙、丙、丁、戊五个工人,甲5天的工作量等于乙6天的工作量,乙8天的工作量等于丙10天的工作量,丙的工作效率等于丁的3/4,丁与戊的工作能力之比是8∶5,现在甲、丙两人合作15天完成的某件工程,由戊一人独做,需要多少天完成?()
A. 50;B. 45;C. 37;D. 25;
分析:选B,令甲工作量效率为a,则乙效率为(5a)/6,丙的效率为(2a)/3,丁的工作效率为(8a)/9,戊的工作效率为(5a)/9=>[a+(2a)/3]×15=[(5a)/9]×x=>x=45=>选B
 
【70】仓库运来含水量为90%的一种水果100千克,一星期后再测发现含水量降低了,变为80%,现在这批水果的总重量是多少千克?( )
A. 90;B. 60;C. 50;D. 40;
分析:选C,一星期前,水有100×90%=90千克,非水有=100-90=10,令一星期后,水重x千克,且非水不分不变=>此时总重为x+10=>x/(x+10)=0.8=>x=40=>此时总重为10+40=50
 
【71】甲、乙、丙三人沿湖边散步,同时从湖边一固定点出发。甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙后 1又1/4 分钟遇到丙.再过 3又3/4分钟第二次遇到乙。 已知乙的速度是甲的 2/3,湖的周长为600米.则丙的速度为:( )
A.24米/分;B. 25米/分;C.26米/分;D.27米/分
分析:选A,以甲乙第一次相遇为顶点,甲乙再次再遇用了1又1/4+3又3/4=5分钟.,又知湖的周长为600米,得到:甲+乙的速度合为120分/秒.,已知乙的速度是甲的 2/3.得:甲的速度为72分/秒.甲第一次遇到乙后1又1/4 分钟钟遇到丙,可知甲用了(5+1又1/4 分钟分与丙相遇,略做计算可知,丙的速度为24分/秒.
 
【72】21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
    A.7;B.8;C.9 ;D.10;
分析:答A,5个数相加为21——奇数=>5个数中,或3奇2偶、或5个奇数
又[21/5]=4,即构成4,4,4,4,5的形式,当为5个奇数时=>4,4,4,4,5中5为奇数=>只要把4,4,4,4拆分成奇数,即可。但奇数列1,3,5,7,9.....中4个数之和最小为16(1+3+5+7)=4+4+4+4,又题目要求每个数都不相同=>5个奇数的情况不存在。当为3奇2偶时=>4,4,4,4,5中已有一个奇数=>只要把4,4,4,4拆分成2奇2偶就可以了=>最简单的拆分为(也是保证每个数都尽量的小的拆分方法),把第一项减1,同时,第二项加1=>3,5,4,4,又因为要满足元素不相同的要求,再不改变2奇2偶个格局的前提下,最简单的拆分就是把第二项加2,同时第三项减2(这样拆分,也会保证所拆得的数尽量最小)=>3,7,2,4=>此时构成2,3,4,5,7=>选A
 
【73】从黄瓜,白菜,油菜,扁豆4种蔬菜品种中选3种,分别种在不同土地的三块土地上,其中黄瓜必须种植,不同的种植方法有
A.24;B.18;C.12;D.6;
分析:答案B,由于黄瓜必选=>相当于在剩下的三个中选2个=>有C(2,3)=3种选法,根据分部相乘原理=>第二步把蔬菜分到土地上,共有P(3,3)(因为题中说是分别种在3个土地上,因此每个块土地只能种一种)=>C(2,3)×P(3,3)=18
 
【74】(1—1/100)x(1—1/99)x(1—1/98)x……x(1—1/90):(  )
     A.1/100;B.89/100;c.1/108812;D.1/1088720
     分析:答案B,1-1/100=99/100,1-1/99=98/99,两项相乘=>98/100,同理往下算=>选B
 
【75】一条长绳一头悬挂重物,用来测量井的深度,绳子2折,放进井里,有7尺露在井口外面;绳子3折,放进井里,距离井口还差1尺,则井深(   )尺。
     A.17;B.8.5;C.34;D.21 ; 
分析:答案A,设绳长为X   X/2-7=x/3+1   x=48   井深=48/2-7=17
 
【76】用一根绳子测量树的周长,将绳子3折,绕树一周,多余3尺;如果将绳子4折,绕树一周,则只多余1尺,则绳长为( )尺。
     A.12;B.24;C.36;D.48;
分析:答案B,设绳长为X   X/3-3=x/4-1=树的周长   所以X=24
 
【77】用1元钱购买2分邮票或4分邮票或8分邮票若干张,没有剩余钱,问一共有多少种不同的买法?
分析:2分买0张:8分可买0--12张-----有13种买法;
     2分买2张:8分可买0--12张-----有13种买法;
     2分买4张:8分可买0--11张-----有12种买法;
     2分买6张:8分可买0--11张-----有12种买法;
     2分买8张:8分可买0--10张-----有11种买法;
     2分买10张:8分可买0--10张-----有11种买法;
     ……   
     2分买44张:8分可买0--1张-----有2种买法;
     2分买46张:8分可买0--1张-----有2种买法;
     2分买48张:8分可买0张-----有1种买法;
     2分买50张:8分可买0张-----有1种买法;
     所以共有2×(1+2+3+4+5+-----+12+13)=182种。
 
【78】两整数相处得商数12。余数26,被除数,除数,商数,余数的和为454,则除数是( )
a.20;b.30;c.40;d.10
 分析:答案B,
思路一:代入法,把选项依次带入到原题中,找出符合题意的。
思路二:令除数为x,则被除数=12×x+26=>(12×x+26)+12+x+26=454=>x=30
 
【79】时钟现在表示的时间是18点整,那么分针旋转1990圈后是( )点钟a.5;b.4;c.6;d.7
分析:答案B,分针走一圈,时针走一小时=>分针走24圈,时针走24小时,即此时时间还是18点=>1990/24=82余22=>时间为18点再过22小时,即16点。若选b的话,则可把16点理解为下午4点。
 
【80】有一个用棋子为成的三层空心方阵,最外面一层每边有棋子17格,则摆在这个方阵共( )颗棋子
a.104;b.159;c.168;d.256
分析:答案C,植树问题的变形。 令每边个数a=>围成一周需要的个数为(a-1) ×n,其中n为边数。里面一层的所需个数=外边相邻一层的个数-2,因此该题,令最外面一层为第一层,则该层棋子数为(17-1) ×4=64;第二层每边个数=17-2=15,该层棋子数为(15-1) ×4=56;第三层每边个数=15-2=13,该层棋子数为(13-1)×4=48;综上,棋子总数为64+56+48=168=>选C
 
【81】甲追乙,开始追时甲乙相距20米,甲跑了45米后,与乙相距8米,则甲还要跑( ) 米才能追上乙?
    a.20;b.45;c.55;d.30
分析:答案D,甲乙作用时间相同,且t=s/v=>甲跑的距离/乙跑的距离=甲的速度/乙的速度,因此,甲第一次跑的45米/乙第一次跑的距离=甲第二次跑的距离/乙第二次跑的距离=甲的速度/乙的速度,乙第一次跑的距离=45-20+8=33,乙第二次跑的距离=甲第二次跑的距离-8,令甲第二次跑的距离为x=>45/33=x/(x-8)=>x=30
 
【82】某班有45名学生,参加天文的,文学的和物理的爱好小组各20人,20人,15人。其中,同时参加天文和文学小组的5人,同时参加文学和物理的小组的5人,同时参加物理和天文的小组的3人。并且全班每人都至少参加了以上三个小组中的某一个。三个小组都参加的有(a)人
     A. 3   B. 5   C .10   D .13
分析:答案C,
【83】甲、乙2人同时从400米的环行跑道的一点A背向出发,8分钟后2人第三次相遇。已知甲每秒钟比乙每秒多行0.1米,问两人第三次相遇的地点与A点沿跑道上的最短距离是( )
A.116米;B.176米;C.224米;D.234米;
分析:答案B,设乙每秒钟走X米,则甲为X+0.1。8×60×X+8×60×(X+0.1)=400×3,X=1.2,8分钟甲乙二人相遇时,乙走的路程为1.2×60×8=576
距A点的最短距离:576-400=176
 
【84】20克糖放入100克水,三天后,糖水只有100克,浓度比原来高了百分之几(D)?
A.15%;B.25%;C.1%;D.20%;
分析:答案D,浓度=浓质/浓液,而开始为:20/120=1/6.三天后为,20/100=1/5,浓度比原来高了:(1/5-1/6)/(1/6)=1/5=20%
 
【85】有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒
分析:四次分别摸出不同的珠子,则下一次,不管摸出什么颜色,都能保证有两颗珠子颜色相同.4+1=5
 
【86】有一筐苹果,把他们三等分后还剩下2个苹果;取出其中两份,将它们三等分后还剩2个;然后再取出其中两份,又将这两份三等分后还剩下2个,问这筐苹果至少有几个?
分析:23个 。因为奇数+奇数=偶数、偶数+偶数=偶数,所以第一次"取出其中两份"的和一定为偶数,则第二次"取出其中两份"的和也一定是偶数。题目要求"至少",所以第二次"取出其中两份"的和为8(因为该数三等分后还余2,并且该数还要为偶数)。第一次3等分:7, 7, 7,余2;第二次14个3等分:4, 4, 4,余2人;第三次8个3等分:2, 2, 2,最后余2.
 
【87】1-1000数中,除去平方数和立方数还有几个数?
分析:1000里最大的平方数是:31,1000里最大的立方数是:10,1000-31-10+3=962,3代表1,4,9的三次方数和1,8,27的平方相同
 
【88】从12点整开始,(包括12点)过12个小时,分针和时针重合( )次?
A,11;B,12;C,13;D,14;
分析:答案B,追击问题变形。一分钟分针走6度,一分钟时针走1/2度=>一分钟分针时针速度差为11/2度,分针时针重合时=>分针走的路程一定超过时针一整圈,令除了开始的12点外,分针时针重合n次=>360×n/(11/2)=12×60=>n=11,综上,共重合11+1=12次
 
【89】一个三位数除以9余7,除以5余2 ,除以4余3,这样的三位楼共有:
A.5个;B.6个;C.7个;D.8个
分析:答案A ,通过后两个推出,尾数是7的数同时满足后两个。那么,加上第一个条件,最小的尾数是7、又能满足上面的数是187=(20×9+7)。由此可知367=40×9+7,657=60×9+7.....共5个。在说详细点:1个数能同时除以9,5,4最小的可能是4×5×9=180,那么个位是几才能满足要求呢,只有7,也就是说是187,那么下一个呢?就是180×2+7=367,180×3+7=367,依次类推……
 
【90】19981999+19991998的尾数是:
A.3;B.6;C.7;D.9;
分析:答案A ,主要看末尾,81=8,82=4,83=2,84=6然后又是8了,四个一循环,1999/4余3,故末尾是2,同理19991998的尾数是1,2+1=3
 
【91】两个相同的瓶子装满盐水溶液,一个瓶子中盐和水的比例是3∶1,另一个瓶子中盐和水的比例是4∶1,若把两瓶盐水溶液混合,则混合液中盐和水的比例是( )。
  A.31∶9;B.4∶55;C.31∶40;D.5∶4
分析:答案A ,设瓶子体积为 20,两瓶混和后 盐 = 15 + 16 = 31,水 = 5 + 4 = 9。
 
【92】将5封信投入3个邮筒,不同的投法共有(  )。
分析:5封信投入3个信箱=>每封信面对3个邮箱,都会有3种选择,且每次投信独立的、不互相影响的=>根据排列组合分部相乘原理=>C(1,3)×C(1,3) ×C(1,3) ×C(1,3) ×C(1,3)=3×3×3×3×3=35
 
【93】甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点,如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米,甲车原来每小时行多少千米?()
A. 20;B. 40;C. 10;D. 30;
分析:答案D ,甲速度x,乙速度y,(6x-12)(y+5)=(6y+12)x,(6x+16)y=(6y-16)(x+5),x=30。其中:(6x-12)/x=(6y+12)/(y+5) 相向而行,时间相等,(6y-16)/y=(6x+16)/(x+5) 相向而行,时间相等,6x 为AC距离
6y 为BC距离
 
【94】A、B是圆的一条直径的两端,小张在A点,小王在B点,同时出发逆时针而行,第一周内,他们在C点第一次相遇,在D点第二次相遇。已知C点离A点80米,D点离B点60米。求这个圆的周长。(  )
A.540;B.400;C.360;D.180
分析:选C,从一开始运动到第一次相遇,小张行了80米,小王行了“半个圆周长+80”米,也就是在相同的时间内,小王比小张多行了半个圆周长,然后,小张、小王又从C点同时开始前进,因为小王的速度比小张快,要第二次再相遇,只能是小王沿圆周比小张多跑一圈。从第一次相遇到第二次相遇小王比小张多走的路程(一个圆周长)是从开始到第一次相遇小王比小张多走的路程(半个圆周长)的2倍。也就是,前者所花的时间是后者的2倍。对于小张来说,从一开始到第一次相遇行了80米,从第一次相遇到第二次相遇就应该行160米,一共行了240米。这样就可以知道半个圆周长是180(=240-60)米。一个圆周长360米。
 
【95】从3、5、7、11四个数中任取两个数相乘,可以得到多少的不相等的积()
A.5;B.4;C.6;D.7
分析:选C,从3、5、7、11四个数中任取两个数相乘,共有C(2,4)=6种取法,分别计算,发现6种情况各不相同。
 
【96】分针走100圈,时针走多少圈()
A.1;B.2;C.25/3;D.3/4
分析:选C, 分针走12圈=>此时,时针走1圈,100/12=25/3,即时针走25/3圈
 
【97】某一天小张发现办公桌上的台历已经7天没有翻了,就一次翻了7张,这7天的日期加起来,得数恰好是77,问这一天是多少号(  )
A.14;B.13;C.15;D.17
分析:选C,"发现办公桌上的台历已经7天没有翻了"=>台历7页没翻=>说明现在是第八页,即第八天。令这7天的中间的一天为x=>这7天分别为x-3,x-2,x-1,x,x+1,x+2,x+3=>7项相加=>7x=77=>x=11=>第七天为14=>第八天为15
 
【98】一个生产队的粮食产量,两年内从60万斤增加到79.35万斤,问平均每年增长百分之几?( )
A.15%;B.20%;C.10%;D.25%
分析:选A,令增长x    60×[(1+x)2]=79.35=>x=15%
 
【99】 传说,古代有个守财奴,临死前留下13颗宝石。嘱咐三个女儿:大女儿可得1/2,二女儿可得1/3,三女儿可得1/4。老人咽气后,三个女儿无论如何也难按遗嘱分配,只好请教舅父。舅父知道了原委后说:“你们父亲的遗嘱不能违背,但也不能将这么珍贵的物品用来陪葬,这事就有我来想办法分配吧”。果然,舅舅很快就将宝石分好,姐妹三人都如数拿走了应分得的宝石,你知道舅舅是怎么分配的么?    
分析:首先将宝石数-1=>13-1=12,然后按照比例分给3个女儿=>大女儿6 二女儿4 三女儿3
 
【100】在一点到二点之间,分针什么时候与时针构成直角?(   )。
A.1点21+9/11分或1点54+6/11分;B.1点21+9/11分;
C.1点54+6/11分;D.1点或2点
分析:选A,分针1分钟走6度,时针一分钟走1/2度,时针分针1分钟的速度差为11/2度,时针分针成直角说明时针分针路程差为270度或90度=>(270+30)/(11/2)=600/11分,(90+30)/(11/2)=240/11分,其中30为时针分针在1点时的距离差。
    更多相关信息请访问博汇教育
责任编辑:中国公务员网
分享到:
相关链接